| Cor | mplexity D | emonstra | ntion | |-----------------------------------|-----------------------------------|------------------|------------------| | | 3 Contestants | 3 Contestants | 3 Contestants | | | Round 1 | Round 2 | Round 3 | | Products | 2 Shapes | 2 Shapes | 3 Shapes | | Processes | 2 Colors | 3 Colors | 4 Colors | | Markets | 2 Cities | 4 Cities | 6 Cities | | | 8 Possibilities | 24 Possibilities | 72 Possibilities | | Products: • Large • Small • Round | Colors: White Yellow Orange Gray | | | | | | Concepts Intro'd | Layout | Procedure | Objective | Keywords | | |-------------|--|---|---|--|---|--|--| | FUNDAMENTAL | Scenario 1 : <u>Autonomous Craftsman</u> | Demonstrates variability
among operators.
Emphasizes using
"standardized work
instructions" | Use separated workstations | 10 Participants build 2
units and record time
for 20 completions,
Testing included. | Key on
variability | Variability, STI
(Standardized Work
Instructions) or Method
Sheets | | | | Scenario 2: <u>Assembly Line Work</u> | Emphasizes PUSH flow
and illustrates
bottlenecks | Sequential
workstations with
unlimited queues
between | 10 participants build
20 units incrementally
while using
apportioned
instructions. Test
station at end. | Demostrate
PUSH flow | Bottleneck, Constraints,
Flow, Push, Quality Control | | | | Scenario 2.5: <u>Assembly Line Work</u>
<u>with Batches</u> | Same as above but introduces batching concept to emphasize bottlenecks | Sequential
workstations with
batch bins Instead of
queue between
some stations | 11 participants build
20 units incrementally
while using
apportioned
instructions. Test
station at end. | Emphasizing
bottlenecks | Bottleneck, Constraints,
Flow, Push, Quality Control,
Batching | | | | Scenario 3: <u>Assembly Line with</u> <u>Balanced Work</u> | Demonstrates PULL vs
PUSH flow and the
concept of workload
balancing | Sequential workstations with small box for single queue space. Work instructions are balanced evenly. | Same as above being constricted to single queue space | Optimizes
Capacity | Pull, Flow, Queue, Workload
Balancing | | | | Scenario 4: <u>Pull system with Check</u>
<u>included</u> | First-Time-Through
Quality (FTT) and
enhanced defect
detection | Same as above with
straw for each
operator to touch
"previous work"
performed upstream | Same as above with
added "Check" step at
the beginning of each
work station and
"test" station
eliminated | Optimizes
Quality | FTT (First-Time-Through),
Metrics, immediate Quality
Detection, Cross-Training,
Non-Value Added (NVA)
Activity | | | | Scenario 5: <u>Strategic Flexing</u> | Introduces Takt time
metric. Introduces
"(lexing" to adjust
capacity in line with Takt.
Reinforces cross-training
concept. | Same as above with 2 or 3 stations unoccupied for flexing. | Same as above but
participants must
physically move
up/down stream as
needed to perpetuate
flow | Optimizes
Resource
Efficency | Flexing, Takt Time,
Customer Demand, Cross-
Training | | | ADVANCED | Scenario 6: Mixed Model Production | Introduces concept of mixed model production and emphasizes crosstraining. Introduces Kanban. | Same as above with 3 different LEGO vehicles coming down the line in random order. Include bins. | Same as a above but participants must use appropriate work instructions for model at hand. | Optimizes
Flexibility | Cross-Training, Mixed
Model, Flexibility, Kanban | | | | The state of s | Emphasizes <mark>Kanban</mark> for
part replenishment. | Same as above but focuses on Kanban. | Same as a above but uses 7 assemblers and 1 kanban runner. All parts are binbased. | Addresses Line
Inventory
Management | Kanban Sizing, Depletion
Rates, Replenishment Time | | | | Scenario 8: Effective Sub-Assemblies | Asseemblies to improve
Lead Time and lower
Fotal Process Cycle Time
(TPC) without changing | Participants on the main line and 4 off- | Sub-assemblers can
build to a serarate
queue (qty 2) | | Total Process Cycle Time,
Lead Time, Touch Time,
Supermarkets | | j. # Game #3: LEGO Train Building #### ▶ Goal: ▶ Demonstrate a host of different Lean improvement techniques to a large group as you systematically modify a simple sequential process ### Operation ▶ Apply selected Lean improvement tools and monitor the impact on issues such as Lead-Time, WIP inventory, quality, bottlenecks, etc. ### Game #4: The Changeover Game #### ▶ Goal - ► To illustrate how productivity (and quality) are impacted as we shift from task to task - ► This game applies more to back-room processes than to manufacturing and makes a great demonstration for office personnel ### Operation Use common strategic board games and require one brave participant to constantly shift from one game to another while their opponents can concentrate on one game alone; then compare productivity # The Changeover Game Results | Opponent | Game | # Moves | Total Time (sec) | Time/Move | |----------|-------------|---------|------------------|-----------------| | Chuck | Connect 4 | 27 | 92 | 3.4 | | Abby | Uno | 46 | 138 | 3.0 | | George | Memory | 23 | 103 | 4.5 | | Barbara | Battleship | 17 | 99 | 5.8 | | | | 113 | 432 | 4.2 tota | | Champion | All 4 Games | 113 | 768 | 6.8 | Operate for 15 to 20 minutes and compare results. Look at productivity and quality for each. ### Game #5: The White Bead Company - ▶ Goal - ► To introduce the notion of common causes of variability and simple control charting through absurdity - ▶ Demonstrate how we cannot inspire or manage our way out of quality issues without the proper application of Continuous Improvement tools - Operation - ▶ Demand that participants produce few or no defects from a defect-rich process and then demonstrate how control charts work | V | /hite Bead | Gan | ne S | amı | ole I | Resu | ults | | | | |---|------------|-----------------|------|-----|-------|------|---------|------|-------|-----| 1 | | | | | DAY OF THE WEEK | | | | | SUMMARY | | | | | | EMPLOYEE | 1 | 2 | 3 | 4 | 5 | Total | Ave | Range | | | 1 | Bob | 10 | 5 | 12 | 8 | 13 | 48 | 9.6 | | | | 2 | Anne | 6 | 10 | 5 | 7 | 5 | 33 | 6.6 | | l i | | 3 | Jill | 7 | 6 | 9 | 6 | 10 | 38 | 7.6 | | A | | 4 | Mark | 7 | 4 | 11 | 5 | 7 | 34 | 6.8 | | | | 5 | Aaron | 6 | 6 | 8 | 9 | 6 | 35 | 7 | | | | 6 | Paul | 9 | 3 | 7 | 6 | 8 | 33 | 6.6 | | i i | | | TOTALS | 45 | 34 | 52 | 41 | 49 | 221 | | | | | | AVERAGE | 7.5 | 5.7 | 8.7 | 6.8 | 8.2 | | 7.37 | | |